1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
| import os import pprint import numpy as np import pandas as pd import random
from transformers import BertTokenizer, BertConfig, BertForSequenceClassification, AdamW, AutoTokenizer, AutoModel from transformers import get_linear_schedule_with_warmup from sklearn.metrics import accuracy_score from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split import torch from torch.utils.data import TensorDataset, DataLoader
class MyBertModel: def __init__(self, train, vocab_path, config_path, pretrain_Model_path, saveModel_path, learning_rate, n_class, epochs, batch_size, val_batch_size, max_len, gpu=True): self.n_class = n_class self.max_len = max_len self.lr = learning_rate self.epochs = epochs
self.tokenizer = BertTokenizer.from_pretrained(vocab_path) text_list, labels = self.load_data(train) train_x, val_x, train_y, val_y = self.split_train_val(text_list, labels) self.train = self.process_data(train_x, train_y) self.validation = self.process_data(val_x, val_y) self.batch_size = batch_size self.val_batch_size = val_batch_size
self.saveModel_path = saveModel_path self.gpu = gpu
config = BertConfig.from_json_file(config_path) config.num_labels = n_class self.model = BertForSequenceClassification.from_pretrained(pretrain_Model_path, config=config) print("Ready!") if self.gpu: seed = 42 random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True self.device = torch.device('cuda') else: self.device = 'cpu'
def encode_fn(self, text_list): tokenizer = self.tokenizer( text_list, padding=True, truncation=True, max_length=self.max_len, return_tensors='pt' ) input_ids = tokenizer['input_ids'] token_type_ids = tokenizer['token_type_ids'] attention_mask = tokenizer['attention_mask'] return input_ids, token_type_ids, attention_mask
def load_data(self, path): df = pd.read_csv(path) text_list = df['review'].to_list() labels = df['label'].to_list() return text_list, labels
def process_data(self, text_list, labels): input_ids, token_type_ids, attention_mask = self.encode_fn(text_list) labels = torch.tensor(labels) data = TensorDataset(input_ids, token_type_ids, attention_mask, labels) return data
def split_train_val(self, data, labels): train_x, val_x, train_y, val_y = train_test_split(data, labels, test_size=0.2, random_state=0) return train_x, val_x, train_y, val_y
def flat_accuracy(self, preds, labels): """A function for calculating accuracy scores""" pred_flat = np.argmax(preds, axis=1).flatten() labels_flat = labels.flatten() return accuracy_score(labels_flat, pred_flat)
def train_model(self): if self.gpu: self.model.cuda() optimizer = torch.optim.AdamW(self.model.parameters(), lr=self.lr) trainData = DataLoader(self.train, batch_size=self.batch_size, shuffle=True) valData = DataLoader(self.validation, batch_size=self.val_batch_size, shuffle=True)
total_steps = len(trainData) * self.epochs scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)
for epoch in range(self.epochs): self.model.train() total_loss, total_val_loss = 0, 0 total_eval_accuracy = 0 print('epoch:', epoch, ', step_number:', len(trainData)) for step, batch in enumerate(trainData): outputs = self.model(input_ids=batch[0].to(self.device), token_type_ids=batch[1].to(self.device), attention_mask=batch[2].to(self.device), labels=batch[3].to(self.device) ) loss, logits = outputs.loss, outputs.logits total_loss += loss.item() loss.backward() torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0) optimizer.step() scheduler.step() if step % 10 == 0 and step > 0: self.model.eval() logits = logits.detach().cpu().numpy() label_ids = batch[3].cuda().data.cpu().numpy() avg_val_accuracy = self.flat_accuracy(logits, label_ids) print('step:', step) print(f'Accuracy: {avg_val_accuracy:.4f}') print('\n') self.model.eval() print('testing ....') for i, batch in enumerate(valData): with torch.no_grad(): loss, logits = self.model(input_ids=batch[0].to(self.device), token_type_ids=batch[1].to(self.device), attention_mask=batch[2].to(self.device), labels=batch[3].to(self.device) ) total_val_loss += loss.item()
logits = logits.detach().cpu().numpy() label_ids = batch[3].cuda().data.cpu().numpy() total_eval_accuracy += self.flat_accuracy(logits, label_ids)
avg_train_loss = total_loss / len(trainData) avg_val_loss = total_val_loss / len(valData) avg_val_accuracy = total_eval_accuracy / len(valData)
print(f'Train loss : {avg_train_loss}') print(f'Validation loss: {avg_val_loss}') print(f'Accuracy: {avg_val_accuracy:.4f}') print('\n') self.save_model(self.saveModel_path + '-' + str(epoch))
def save_model(self, path): self.model.save_pretrained(path) self.tokenizer.save_pretrained(path)
def load_model(self, path): tokenizer = AutoTokenizer.from_pretrained(path) model = BertForSequenceClassification.from_pretrained(path) return tokenizer, model
def eval_model(self, Tokenizer, model, text_list, y_true): preds = self.predict_batch(Tokenizer, model, text_list) print(classification_report(y_true, preds))
def predict_batch(self, Tokenizer, model, text_list): tokenizer = Tokenizer( text_list, padding=True, truncation=True, max_length=self.max_len, return_tensors='pt' ) input_ids = tokenizer['input_ids'] token_type_ids = tokenizer['token_type_ids'] attention_mask = tokenizer['attention_mask'] pred_data = TensorDataset(input_ids, token_type_ids, attention_mask) pred_dataloader = DataLoader(pred_data, batch_size=self.batch_size, shuffle=False) model = model.to(self.device) model.eval() preds = [] for i, batch in enumerate(pred_dataloader): with torch.no_grad(): outputs = model(input_ids=batch[0].to(self.device), token_type_ids=batch[1].to(self.device), attention_mask=batch[2].to(self.device) ) logits = outputs[0] logits = logits.detach().cpu().numpy() preds += list(np.argmax(logits, axis=1)) return preds
if __name__ == '__main__': epoch = 3 pretrained_path = "./pretrained/bert-base-uncased" dataset_path = "./datasets" save_path = "./results" train_path = os.path.join(dataset_path, "simplifyweibo_4_moods/simplifyweibo_4_moods.csv") save_model_path = os.path.join(save_path) bert_tokenizer_path = pretrained_path bert_config_path = os.path.join(pretrained_path, "config.json") bert_model_path = os.path.join(pretrained_path, "model") model_name = "bert_weibo" myBertModel = MyBertModel( train=train_path, vocab_path=bert_tokenizer_path, config_path=bert_config_path, pretrain_Model_path=bert_model_path, saveModel_path=os.path.join(save_model_path, model_name), learning_rate=2e-5, n_class=4, epochs=epoch, batch_size=4, val_batch_size=4, max_len=100, gpu=True ) myBertModel.train_model() Tokenizer, model = myBertModel.load_model(myBertModel.saveModel_path + '-' + str(epoch - 1))
|